Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ioossico | |- ( A (,) B ) C_ ( A [,) B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo | |- (,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a < x /\ x < b ) } ) |
|
2 | df-ico | |- [,) = ( a e. RR* , b e. RR* |-> { x e. RR* | ( a <_ x /\ x < b ) } ) |
|
3 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
|
4 | idd | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w < B ) ) |
|
5 | 1 2 3 4 | ixxssixx | |- ( A (,) B ) C_ ( A [,) B ) |