| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iota4 |
⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ) |
| 2 |
|
iotaex |
⊢ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ∈ V |
| 3 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 4 |
3
|
sbcth |
⊢ ( ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ∈ V → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ) |
| 5 |
2 4
|
ax-mp |
⊢ [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 6 |
|
sbcimg |
⊢ ( ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ∈ V → ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ↔ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) ) ) |
| 7 |
2 6
|
ax-mp |
⊢ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ↔ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) ) |
| 8 |
5 7
|
mpbi |
⊢ ( [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) |
| 9 |
1 8
|
syl |
⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → [ ( ℩ 𝑥 ( 𝜑 ∧ 𝜓 ) ) / 𝑥 ] 𝜑 ) |