Step |
Hyp |
Ref |
Expression |
1 |
|
iprodclim.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iprodclim.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iprodclim.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
4 |
|
iprodclim.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
iprodclim.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
6 |
|
iprodclim.6 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝐵 ) |
7 |
1 2 3 4 5
|
iprod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
8 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
9 |
|
ffun |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) |
10 |
8 9
|
ax-mp |
⊢ Fun ⇝ |
11 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐵 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝐵 ) ) |
12 |
10 6 11
|
mpsyl |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝐵 ) |
13 |
7 12
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 = 𝐵 ) |