Metamath Proof Explorer


Theorem iprodclim

Description: An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1 𝑍 = ( ℤ𝑀 )
iprodclim.2 ( 𝜑𝑀 ∈ ℤ )
iprodclim.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
iprodclim.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
iprodclim.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
iprodclim.6 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝐵 )
Assertion iprodclim ( 𝜑 → ∏ 𝑘𝑍 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 iprodclim.1 𝑍 = ( ℤ𝑀 )
2 iprodclim.2 ( 𝜑𝑀 ∈ ℤ )
3 iprodclim.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
4 iprodclim.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
5 iprodclim.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
6 iprodclim.6 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝐵 )
7 1 2 3 4 5 iprod ( 𝜑 → ∏ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )
8 fclim ⇝ : dom ⇝ ⟶ ℂ
9 ffun ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ )
10 8 9 ax-mp Fun ⇝
11 funbrfv ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐵 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝐵 ) )
12 10 6 11 mpsyl ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝐵 )
13 7 12 eqtrd ( 𝜑 → ∏ 𝑘𝑍 𝐴 = 𝐵 )