Step |
Hyp |
Ref |
Expression |
1 |
|
iprodclim.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iprodclim.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iprodclim.3 |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
4 |
|
iprodclim.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
5 |
|
iprodclim.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
6 |
|
iprodclim.6 |
|- ( ph -> seq M ( x. , F ) ~~> B ) |
7 |
1 2 3 4 5
|
iprod |
|- ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) ) |
8 |
|
fclim |
|- ~~> : dom ~~> --> CC |
9 |
|
ffun |
|- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
10 |
8 9
|
ax-mp |
|- Fun ~~> |
11 |
|
funbrfv |
|- ( Fun ~~> -> ( seq M ( x. , F ) ~~> B -> ( ~~> ` seq M ( x. , F ) ) = B ) ) |
12 |
10 6 11
|
mpsyl |
|- ( ph -> ( ~~> ` seq M ( x. , F ) ) = B ) |
13 |
7 12
|
eqtrd |
|- ( ph -> prod_ k e. Z A = B ) |