| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodclim.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iprodclim.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iprodclim.3 |  |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) | 
						
							| 4 |  | iprodclim.4 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) | 
						
							| 5 |  | iprodclim.5 |  |-  ( ( ph /\ k e. Z ) -> A e. CC ) | 
						
							| 6 |  | iprodclim.6 |  |-  ( ph -> seq M ( x. , F ) ~~> B ) | 
						
							| 7 | 1 2 3 4 5 | iprod |  |-  ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) ) | 
						
							| 8 |  | fclim |  |-  ~~> : dom ~~> --> CC | 
						
							| 9 |  | ffun |  |-  ( ~~> : dom ~~> --> CC -> Fun ~~> ) | 
						
							| 10 | 8 9 | ax-mp |  |-  Fun ~~> | 
						
							| 11 |  | funbrfv |  |-  ( Fun ~~> -> ( seq M ( x. , F ) ~~> B -> ( ~~> ` seq M ( x. , F ) ) = B ) ) | 
						
							| 12 | 10 6 11 | mpsyl |  |-  ( ph -> ( ~~> ` seq M ( x. , F ) ) = B ) | 
						
							| 13 | 7 12 | eqtrd |  |-  ( ph -> prod_ k e. Z A = B ) |