Metamath Proof Explorer


Theorem iprodclim

Description: An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1
|- Z = ( ZZ>= ` M )
iprodclim.2
|- ( ph -> M e. ZZ )
iprodclim.3
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
iprodclim.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
iprodclim.5
|- ( ( ph /\ k e. Z ) -> A e. CC )
iprodclim.6
|- ( ph -> seq M ( x. , F ) ~~> B )
Assertion iprodclim
|- ( ph -> prod_ k e. Z A = B )

Proof

Step Hyp Ref Expression
1 iprodclim.1
 |-  Z = ( ZZ>= ` M )
2 iprodclim.2
 |-  ( ph -> M e. ZZ )
3 iprodclim.3
 |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
4 iprodclim.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
5 iprodclim.5
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
6 iprodclim.6
 |-  ( ph -> seq M ( x. , F ) ~~> B )
7 1 2 3 4 5 iprod
 |-  ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) )
8 fclim
 |-  ~~> : dom ~~> --> CC
9 ffun
 |-  ( ~~> : dom ~~> --> CC -> Fun ~~> )
10 8 9 ax-mp
 |-  Fun ~~>
11 funbrfv
 |-  ( Fun ~~> -> ( seq M ( x. , F ) ~~> B -> ( ~~> ` seq M ( x. , F ) ) = B ) )
12 10 6 11 mpsyl
 |-  ( ph -> ( ~~> ` seq M ( x. , F ) ) = B )
13 7 12 eqtrd
 |-  ( ph -> prod_ k e. Z A = B )