Metamath Proof Explorer


Theorem iprod

Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypotheses zprod.1
|- Z = ( ZZ>= ` M )
zprod.2
|- ( ph -> M e. ZZ )
zprod.3
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
iprod.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B )
iprod.5
|- ( ( ph /\ k e. Z ) -> B e. CC )
Assertion iprod
|- ( ph -> prod_ k e. Z B = ( ~~> ` seq M ( x. , F ) ) )

Proof

Step Hyp Ref Expression
1 zprod.1
 |-  Z = ( ZZ>= ` M )
2 zprod.2
 |-  ( ph -> M e. ZZ )
3 zprod.3
 |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
4 iprod.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = B )
5 iprod.5
 |-  ( ( ph /\ k e. Z ) -> B e. CC )
6 ssidd
 |-  ( ph -> Z C_ Z )
7 iftrue
 |-  ( k e. Z -> if ( k e. Z , B , 1 ) = B )
8 7 adantl
 |-  ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 1 ) = B )
9 4 8 eqtr4d
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 1 ) )
10 1 2 3 6 9 5 zprod
 |-  ( ph -> prod_ k e. Z B = ( ~~> ` seq M ( x. , F ) ) )