Metamath Proof Explorer


Theorem zprodn0

Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017)

Ref Expression
Hypotheses zprodn0.1
|- Z = ( ZZ>= ` M )
zprodn0.2
|- ( ph -> M e. ZZ )
zprodn0.3
|- ( ph -> X =/= 0 )
zprodn0.4
|- ( ph -> seq M ( x. , F ) ~~> X )
zprodn0.5
|- ( ph -> A C_ Z )
zprodn0.6
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 1 ) )
zprodn0.7
|- ( ( ph /\ k e. A ) -> B e. CC )
Assertion zprodn0
|- ( ph -> prod_ k e. A B = X )

Proof

Step Hyp Ref Expression
1 zprodn0.1
 |-  Z = ( ZZ>= ` M )
2 zprodn0.2
 |-  ( ph -> M e. ZZ )
3 zprodn0.3
 |-  ( ph -> X =/= 0 )
4 zprodn0.4
 |-  ( ph -> seq M ( x. , F ) ~~> X )
5 zprodn0.5
 |-  ( ph -> A C_ Z )
6 zprodn0.6
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 1 ) )
7 zprodn0.7
 |-  ( ( ph /\ k e. A ) -> B e. CC )
8 1 2 4 3 ntrivcvgn0
 |-  ( ph -> E. m e. Z E. x ( x =/= 0 /\ seq m ( x. , F ) ~~> x ) )
9 1 2 8 5 6 7 zprod
 |-  ( ph -> prod_ k e. A B = ( ~~> ` seq M ( x. , F ) ) )
10 fclim
 |-  ~~> : dom ~~> --> CC
11 ffun
 |-  ( ~~> : dom ~~> --> CC -> Fun ~~> )
12 10 11 ax-mp
 |-  Fun ~~>
13 funbrfv
 |-  ( Fun ~~> -> ( seq M ( x. , F ) ~~> X -> ( ~~> ` seq M ( x. , F ) ) = X ) )
14 12 4 13 mpsyl
 |-  ( ph -> ( ~~> ` seq M ( x. , F ) ) = X )
15 9 14 eqtrd
 |-  ( ph -> prod_ k e. A B = X )