Metamath Proof Explorer


Theorem iprod

Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypotheses zprod.1 Z=M
zprod.2 φM
zprod.3 φnZyy0seqn×Fy
iprod.4 φkZFk=B
iprod.5 φkZB
Assertion iprod φkZB=seqM×F

Proof

Step Hyp Ref Expression
1 zprod.1 Z=M
2 zprod.2 φM
3 zprod.3 φnZyy0seqn×Fy
4 iprod.4 φkZFk=B
5 iprod.5 φkZB
6 ssidd φZZ
7 iftrue kZifkZB1=B
8 7 adantl φkZifkZB1=B
9 4 8 eqtr4d φkZFk=ifkZB1
10 1 2 3 6 9 5 zprod φkZB=seqM×F