| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodclim.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iprodclim.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iprodclim.3 |  |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) | 
						
							| 4 |  | iprodclim.4 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) | 
						
							| 5 |  | iprodclim.5 |  |-  ( ( ph /\ k e. Z ) -> A e. CC ) | 
						
							| 6 | 4 5 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 7 | 1 3 6 | ntrivcvg |  |-  ( ph -> seq M ( x. , F ) e. dom ~~> ) | 
						
							| 8 |  | climdm |  |-  ( seq M ( x. , F ) e. dom ~~> <-> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ph -> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) | 
						
							| 10 | 1 2 3 4 5 | iprod |  |-  ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) ) | 
						
							| 11 | 9 10 | breqtrrd |  |-  ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A ) |