Step |
Hyp |
Ref |
Expression |
1 |
|
iprodclim.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
iprodclim.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
iprodclim.3 |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
4 |
|
iprodclim.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
5 |
|
iprodclim.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
6 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
7 |
1 3 6
|
ntrivcvg |
|- ( ph -> seq M ( x. , F ) e. dom ~~> ) |
8 |
|
climdm |
|- ( seq M ( x. , F ) e. dom ~~> <-> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) |
9 |
7 8
|
sylib |
|- ( ph -> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) |
10 |
1 2 3 4 5
|
iprod |
|- ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) ) |
11 |
9 10
|
breqtrrd |
|- ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A ) |