Metamath Proof Explorer


Theorem iprodclim2

Description: A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1
|- Z = ( ZZ>= ` M )
iprodclim.2
|- ( ph -> M e. ZZ )
iprodclim.3
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
iprodclim.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
iprodclim.5
|- ( ( ph /\ k e. Z ) -> A e. CC )
Assertion iprodclim2
|- ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A )

Proof

Step Hyp Ref Expression
1 iprodclim.1
 |-  Z = ( ZZ>= ` M )
2 iprodclim.2
 |-  ( ph -> M e. ZZ )
3 iprodclim.3
 |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
4 iprodclim.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
5 iprodclim.5
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
6 4 5 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
7 1 3 6 ntrivcvg
 |-  ( ph -> seq M ( x. , F ) e. dom ~~> )
8 climdm
 |-  ( seq M ( x. , F ) e. dom ~~> <-> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) )
9 7 8 sylib
 |-  ( ph -> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) )
10 1 2 3 4 5 iprod
 |-  ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) )
11 9 10 breqtrrd
 |-  ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A )