| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrivcvg.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | ntrivcvg.2 |  |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) | 
						
							| 3 |  | ntrivcvg.3 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 4 |  | uzm1 |  |-  ( n e. ( ZZ>= ` M ) -> ( n = M \/ ( n - 1 ) e. ( ZZ>= ` M ) ) ) | 
						
							| 5 | 4 1 | eleq2s |  |-  ( n e. Z -> ( n = M \/ ( n - 1 ) e. ( ZZ>= ` M ) ) ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) -> ( n = M \/ ( n - 1 ) e. ( ZZ>= ` M ) ) ) | 
						
							| 7 |  | seqeq1 |  |-  ( n = M -> seq n ( x. , F ) = seq M ( x. , F ) ) | 
						
							| 8 | 7 | breq1d |  |-  ( n = M -> ( seq n ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> y ) ) | 
						
							| 9 |  | seqex |  |-  seq M ( x. , F ) e. _V | 
						
							| 10 |  | vex |  |-  y e. _V | 
						
							| 11 | 9 10 | breldm |  |-  ( seq M ( x. , F ) ~~> y -> seq M ( x. , F ) e. dom ~~> ) | 
						
							| 12 | 8 11 | biimtrdi |  |-  ( n = M -> ( seq n ( x. , F ) ~~> y -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 13 | 12 | adantld |  |-  ( n = M -> ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 14 |  | simplr |  |-  ( ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) /\ seq n ( x. , F ) ~~> y ) -> ( n - 1 ) e. Z ) | 
						
							| 15 | 3 | ad5ant15 |  |-  ( ( ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) /\ seq n ( x. , F ) ~~> y ) /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 16 |  | uzssz |  |-  ( ZZ>= ` M ) C_ ZZ | 
						
							| 17 | 1 16 | eqsstri |  |-  Z C_ ZZ | 
						
							| 18 |  | simplr |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> n e. Z ) | 
						
							| 19 | 17 18 | sselid |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> n e. ZZ ) | 
						
							| 20 | 19 | zcnd |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> n e. CC ) | 
						
							| 21 |  | 1cnd |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> 1 e. CC ) | 
						
							| 22 | 20 21 | npcand |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 23 | 22 | seqeq1d |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> seq ( ( n - 1 ) + 1 ) ( x. , F ) = seq n ( x. , F ) ) | 
						
							| 24 | 23 | breq1d |  |-  ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) -> ( seq ( ( n - 1 ) + 1 ) ( x. , F ) ~~> y <-> seq n ( x. , F ) ~~> y ) ) | 
						
							| 25 | 24 | biimpar |  |-  ( ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq ( ( n - 1 ) + 1 ) ( x. , F ) ~~> y ) | 
						
							| 26 | 1 14 15 25 | clim2prod |  |-  ( ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) ~~> ( ( seq M ( x. , F ) ` ( n - 1 ) ) x. y ) ) | 
						
							| 27 |  | ovex |  |-  ( ( seq M ( x. , F ) ` ( n - 1 ) ) x. y ) e. _V | 
						
							| 28 | 9 27 | breldm |  |-  ( seq M ( x. , F ) ~~> ( ( seq M ( x. , F ) ` ( n - 1 ) ) x. y ) -> seq M ( x. , F ) e. dom ~~> ) | 
						
							| 29 | 26 28 | syl |  |-  ( ( ( ( ph /\ n e. Z ) /\ ( n - 1 ) e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) | 
						
							| 30 | 29 | an32s |  |-  ( ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) /\ ( n - 1 ) e. Z ) -> seq M ( x. , F ) e. dom ~~> ) | 
						
							| 31 | 30 | expcom |  |-  ( ( n - 1 ) e. Z -> ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 32 | 1 | eqcomi |  |-  ( ZZ>= ` M ) = Z | 
						
							| 33 | 31 32 | eleq2s |  |-  ( ( n - 1 ) e. ( ZZ>= ` M ) -> ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 34 | 13 33 | jaoi |  |-  ( ( n = M \/ ( n - 1 ) e. ( ZZ>= ` M ) ) -> ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 35 | 6 34 | mpcom |  |-  ( ( ( ph /\ n e. Z ) /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) | 
						
							| 36 | 35 | ex |  |-  ( ( ph /\ n e. Z ) -> ( seq n ( x. , F ) ~~> y -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 37 | 36 | adantld |  |-  ( ( ph /\ n e. Z ) -> ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 38 | 37 | exlimdv |  |-  ( ( ph /\ n e. Z ) -> ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 39 | 38 | rexlimdva |  |-  ( ph -> ( E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) -> seq M ( x. , F ) e. dom ~~> ) ) | 
						
							| 40 | 2 39 | mpd |  |-  ( ph -> seq M ( x. , F ) e. dom ~~> ) |