Metamath Proof Explorer


Theorem ntrivcvg

Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses ntrivcvg.1 Z = M
ntrivcvg.2 φ n Z y y 0 seq n × F y
ntrivcvg.3 φ k Z F k
Assertion ntrivcvg φ seq M × F dom

Proof

Step Hyp Ref Expression
1 ntrivcvg.1 Z = M
2 ntrivcvg.2 φ n Z y y 0 seq n × F y
3 ntrivcvg.3 φ k Z F k
4 uzm1 n M n = M n 1 M
5 4 1 eleq2s n Z n = M n 1 M
6 5 ad2antlr φ n Z seq n × F y n = M n 1 M
7 seqeq1 n = M seq n × F = seq M × F
8 7 breq1d n = M seq n × F y seq M × F y
9 seqex seq M × F V
10 vex y V
11 9 10 breldm seq M × F y seq M × F dom
12 8 11 syl6bi n = M seq n × F y seq M × F dom
13 12 adantld n = M φ n Z seq n × F y seq M × F dom
14 simplr φ n Z n 1 Z seq n × F y n 1 Z
15 3 ad5ant15 φ n Z n 1 Z seq n × F y k Z F k
16 uzssz M
17 1 16 eqsstri Z
18 simplr φ n Z n 1 Z n Z
19 17 18 sseldi φ n Z n 1 Z n
20 19 zcnd φ n Z n 1 Z n
21 1cnd φ n Z n 1 Z 1
22 20 21 npcand φ n Z n 1 Z n - 1 + 1 = n
23 22 seqeq1d φ n Z n 1 Z seq n - 1 + 1 × F = seq n × F
24 23 breq1d φ n Z n 1 Z seq n - 1 + 1 × F y seq n × F y
25 24 biimpar φ n Z n 1 Z seq n × F y seq n - 1 + 1 × F y
26 1 14 15 25 clim2prod φ n Z n 1 Z seq n × F y seq M × F seq M × F n 1 y
27 ovex seq M × F n 1 y V
28 9 27 breldm seq M × F seq M × F n 1 y seq M × F dom
29 26 28 syl φ n Z n 1 Z seq n × F y seq M × F dom
30 29 an32s φ n Z seq n × F y n 1 Z seq M × F dom
31 30 expcom n 1 Z φ n Z seq n × F y seq M × F dom
32 1 eqcomi M = Z
33 31 32 eleq2s n 1 M φ n Z seq n × F y seq M × F dom
34 13 33 jaoi n = M n 1 M φ n Z seq n × F y seq M × F dom
35 6 34 mpcom φ n Z seq n × F y seq M × F dom
36 35 ex φ n Z seq n × F y seq M × F dom
37 36 adantld φ n Z y 0 seq n × F y seq M × F dom
38 37 exlimdv φ n Z y y 0 seq n × F y seq M × F dom
39 38 rexlimdva φ n Z y y 0 seq n × F y seq M × F dom
40 2 39 mpd φ seq M × F dom