| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrivcvg.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | ntrivcvg.2 | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  𝑍 ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 ) ) | 
						
							| 3 |  | ntrivcvg.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 4 |  | uzm1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑛  =  𝑀  ∨  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 5 | 4 1 | eleq2s | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝑛  =  𝑀  ∨  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  ( 𝑛  =  𝑀  ∨  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 7 |  | seqeq1 | ⊢ ( 𝑛  =  𝑀  →  seq 𝑛 (  ·  ,  𝐹 )  =  seq 𝑀 (  ·  ,  𝐹 ) ) | 
						
							| 8 | 7 | breq1d | ⊢ ( 𝑛  =  𝑀  →  ( seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦  ↔  seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝑦 ) ) | 
						
							| 9 |  | seqex | ⊢ seq 𝑀 (  ·  ,  𝐹 )  ∈  V | 
						
							| 10 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 11 | 9 10 | breldm | ⊢ ( seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝑦  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 12 | 8 11 | biimtrdi | ⊢ ( 𝑛  =  𝑀  →  ( seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 13 | 12 | adantld | ⊢ ( 𝑛  =  𝑀  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  ( 𝑛  −  1 )  ∈  𝑍 ) | 
						
							| 15 | 3 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 16 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 17 | 1 16 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 19 | 17 18 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  𝑛  ∈  ℤ ) | 
						
							| 20 | 19 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  𝑛  ∈  ℂ ) | 
						
							| 21 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  1  ∈  ℂ ) | 
						
							| 22 | 20 21 | npcand | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 23 | 22 | seqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  seq ( ( 𝑛  −  1 )  +  1 ) (  ·  ,  𝐹 )  =  seq 𝑛 (  ·  ,  𝐹 ) ) | 
						
							| 24 | 23 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  ( seq ( ( 𝑛  −  1 )  +  1 ) (  ·  ,  𝐹 )  ⇝  𝑦  ↔  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 ) ) | 
						
							| 25 | 24 | biimpar | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq ( ( 𝑛  −  1 )  +  1 ) (  ·  ,  𝐹 )  ⇝  𝑦 ) | 
						
							| 26 | 1 14 15 25 | clim2prod | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ⇝  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  −  1 ) )  ·  𝑦 ) ) | 
						
							| 27 |  | ovex | ⊢ ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  −  1 ) )  ·  𝑦 )  ∈  V | 
						
							| 28 | 9 27 | breldm | ⊢ ( seq 𝑀 (  ·  ,  𝐹 )  ⇝  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ ( 𝑛  −  1 ) )  ·  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 29 | 26 28 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 30 | 29 | an32s | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  ∧  ( 𝑛  −  1 )  ∈  𝑍 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 31 | 30 | expcom | ⊢ ( ( 𝑛  −  1 )  ∈  𝑍  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 32 | 1 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 )  =  𝑍 | 
						
							| 33 | 31 32 | eleq2s | ⊢ ( ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 34 | 13 33 | jaoi | ⊢ ( ( 𝑛  =  𝑀  ∨  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 35 | 6 34 | mpcom | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 37 | 36 | adantld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 38 | 37 | exlimdv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 39 | 38 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  𝑍 ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 )  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 40 | 2 39 | mpd | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) |