| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2prod.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
clim2prod.2 |
|- ( ph -> N e. Z ) |
| 3 |
|
clim2prod.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 4 |
|
clim2prod.4 |
|- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> A ) |
| 5 |
|
eqid |
|- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
| 6 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 7 |
1 6
|
eqsstri |
|- Z C_ ZZ |
| 8 |
7 2
|
sselid |
|- ( ph -> N e. ZZ ) |
| 9 |
8
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 10 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
10 11
|
syl |
|- ( ph -> M e. ZZ ) |
| 13 |
1 12 3
|
prodf |
|- ( ph -> seq M ( x. , F ) : Z --> CC ) |
| 14 |
13 2
|
ffvelcdmd |
|- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 15 |
|
seqex |
|- seq M ( x. , F ) e. _V |
| 16 |
15
|
a1i |
|- ( ph -> seq M ( x. , F ) e. _V ) |
| 17 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 18 |
|
uzss |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
| 19 |
10 17 18
|
3syl |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
| 20 |
19 1
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ Z ) |
| 21 |
20
|
sselda |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 22 |
21 3
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 23 |
5 9 22
|
prodf |
|- ( ph -> seq ( N + 1 ) ( x. , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 24 |
23
|
ffvelcdmda |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` k ) e. CC ) |
| 25 |
|
fveq2 |
|- ( x = ( N + 1 ) -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` ( N + 1 ) ) ) |
| 26 |
|
fveq2 |
|- ( x = ( N + 1 ) -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) |
| 27 |
26
|
oveq2d |
|- ( x = ( N + 1 ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) |
| 28 |
25 27
|
eqeq12d |
|- ( x = ( N + 1 ) -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( x = ( N + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) ) |
| 30 |
|
fveq2 |
|- ( x = n -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` n ) ) |
| 31 |
|
fveq2 |
|- ( x = n -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` n ) ) |
| 32 |
31
|
oveq2d |
|- ( x = n -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) |
| 33 |
30 32
|
eqeq12d |
|- ( x = n -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) ) |
| 34 |
33
|
imbi2d |
|- ( x = n -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) ) ) |
| 35 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` ( n + 1 ) ) ) |
| 36 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) |
| 37 |
36
|
oveq2d |
|- ( x = ( n + 1 ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
| 38 |
35 37
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) |
| 39 |
38
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 40 |
|
fveq2 |
|- ( x = k -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` k ) ) |
| 41 |
|
fveq2 |
|- ( x = k -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` k ) ) |
| 42 |
41
|
oveq2d |
|- ( x = k -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) |
| 43 |
40 42
|
eqeq12d |
|- ( x = k -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) |
| 44 |
43
|
imbi2d |
|- ( x = k -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) ) |
| 45 |
10
|
adantr |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> N e. ( ZZ>= ` M ) ) |
| 46 |
|
seqp1 |
|- ( N e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
| 48 |
|
seq1 |
|- ( ( N + 1 ) e. ZZ -> ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
| 49 |
48
|
adantl |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
| 50 |
49
|
oveq2d |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
| 51 |
47 50
|
eqtr4d |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) |
| 52 |
51
|
expcom |
|- ( ( N + 1 ) e. ZZ -> ( ph -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) |
| 53 |
19
|
sselda |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 54 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 55 |
53 54
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 57 |
|
oveq1 |
|- ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) ) |
| 58 |
57
|
adantl |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) ) |
| 59 |
14
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 60 |
23
|
ffvelcdmda |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` n ) e. CC ) |
| 61 |
|
peano2uz |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
| 62 |
61 1
|
eleqtrrdi |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
| 63 |
53 62
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( n + 1 ) e. Z ) |
| 64 |
3
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 65 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 66 |
65
|
eleq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
| 67 |
66
|
rspcv |
|- ( ( n + 1 ) e. Z -> ( A. k e. Z ( F ` k ) e. CC -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 68 |
64 67
|
mpan9 |
|- ( ( ph /\ ( n + 1 ) e. Z ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 69 |
63 68
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 70 |
59 60 69
|
mulassd |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 71 |
70
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 72 |
|
seqp1 |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) = ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 73 |
72
|
adantl |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) = ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 74 |
73
|
oveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 76 |
71 75
|
eqtr4d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
| 77 |
56 58 76
|
3eqtrd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
| 78 |
77
|
exp31 |
|- ( ph -> ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 79 |
78
|
com12 |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ph -> ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 80 |
79
|
a2d |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ( ph -> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 81 |
29 34 39 44 52 80
|
uzind4 |
|- ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( ph -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) |
| 82 |
81
|
impcom |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) |
| 83 |
5 9 4 14 16 24 82
|
climmulc2 |
|- ( ph -> seq M ( x. , F ) ~~> ( ( seq M ( x. , F ) ` N ) x. A ) ) |