Metamath Proof Explorer


Theorem prodf

Description: An infinite product of complex terms is a function from an upper set of integers to CC . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodf.1
|- Z = ( ZZ>= ` M )
prodf.2
|- ( ph -> M e. ZZ )
prodf.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
Assertion prodf
|- ( ph -> seq M ( x. , F ) : Z --> CC )

Proof

Step Hyp Ref Expression
1 prodf.1
 |-  Z = ( ZZ>= ` M )
2 prodf.2
 |-  ( ph -> M e. ZZ )
3 prodf.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
4 mulcl
 |-  ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC )
5 4 adantl
 |-  ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC )
6 1 2 3 5 seqf
 |-  ( ph -> seq M ( x. , F ) : Z --> CC )