Metamath Proof Explorer


Theorem iprodclim2

Description: A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1 Z=M
iprodclim.2 φM
iprodclim.3 φnZyy0seqn×Fy
iprodclim.4 φkZFk=A
iprodclim.5 φkZA
Assertion iprodclim2 φseqM×FkZA

Proof

Step Hyp Ref Expression
1 iprodclim.1 Z=M
2 iprodclim.2 φM
3 iprodclim.3 φnZyy0seqn×Fy
4 iprodclim.4 φkZFk=A
5 iprodclim.5 φkZA
6 4 5 eqeltrd φkZFk
7 1 3 6 ntrivcvg φseqM×Fdom
8 climdm seqM×FdomseqM×FseqM×F
9 7 8 sylib φseqM×FseqM×F
10 1 2 3 4 5 iprod φkZA=seqM×F
11 9 10 breqtrrd φseqM×FkZA