| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodclim.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iprodclim.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | iprodclim.3 | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  𝑍 ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 ) ) | 
						
							| 4 |  | iprodclim.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 5 |  | iprodclim.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 4 5 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 7 | 1 3 6 | ntrivcvg | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 8 |  | climdm | ⊢ ( seq 𝑀 (  ·  ,  𝐹 )  ∈  dom   ⇝   ↔  seq 𝑀 (  ·  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 𝑀 (  ·  ,  𝐹 ) ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ⇝  (  ⇝  ‘ seq 𝑀 (  ·  ,  𝐹 ) ) ) | 
						
							| 10 | 1 2 3 4 5 | iprod | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑍 𝐴  =  (  ⇝  ‘ seq 𝑀 (  ·  ,  𝐹 ) ) ) | 
						
							| 11 | 9 10 | breqtrrd | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ⇝  ∏ 𝑘  ∈  𝑍 𝐴 ) |