| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodclim3.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
iprodclim3.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
iprodclim3.3 |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , ( k e. Z |-> A ) ) ~~> y ) ) |
| 4 |
|
iprodclim3.4 |
|- ( ph -> F e. dom ~~> ) |
| 5 |
|
iprodclim3.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 6 |
|
iprodclim3.6 |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = prod_ k e. ( M ... j ) A ) |
| 7 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
| 8 |
4 7
|
sylib |
|- ( ph -> F ~~> ( ~~> ` F ) ) |
| 9 |
|
prodfc |
|- prod_ m e. Z ( ( k e. Z |-> A ) ` m ) = prod_ k e. Z A |
| 10 |
|
eqidd |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
| 11 |
5
|
fmpttd |
|- ( ph -> ( k e. Z |-> A ) : Z --> CC ) |
| 12 |
11
|
ffvelcdmda |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 13 |
1 2 3 10 12
|
iprod |
|- ( ph -> prod_ m e. Z ( ( k e. Z |-> A ) ` m ) = ( ~~> ` seq M ( x. , ( k e. Z |-> A ) ) ) ) |
| 14 |
9 13
|
eqtr3id |
|- ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , ( k e. Z |-> A ) ) ) ) |
| 15 |
|
seqex |
|- seq M ( x. , ( k e. Z |-> A ) ) e. _V |
| 16 |
15
|
a1i |
|- ( ph -> seq M ( x. , ( k e. Z |-> A ) ) e. _V ) |
| 17 |
|
fvres |
|- ( m e. ( M ... j ) -> ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
| 18 |
|
fzssuz |
|- ( M ... j ) C_ ( ZZ>= ` M ) |
| 19 |
18 1
|
sseqtrri |
|- ( M ... j ) C_ Z |
| 20 |
|
resmpt |
|- ( ( M ... j ) C_ Z -> ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) ) |
| 21 |
19 20
|
ax-mp |
|- ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) |
| 22 |
21
|
fveq1i |
|- ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) |
| 23 |
17 22
|
eqtr3di |
|- ( m e. ( M ... j ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) ) |
| 24 |
23
|
prodeq2i |
|- prod_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = prod_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) |
| 25 |
|
prodfc |
|- prod_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) = prod_ k e. ( M ... j ) A |
| 26 |
24 25
|
eqtri |
|- prod_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = prod_ k e. ( M ... j ) A |
| 27 |
|
eqidd |
|- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 29 |
28 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 30 |
|
elfzuz |
|- ( m e. ( M ... j ) -> m e. ( ZZ>= ` M ) ) |
| 31 |
30 1
|
eleqtrrdi |
|- ( m e. ( M ... j ) -> m e. Z ) |
| 32 |
31 12
|
sylan2 |
|- ( ( ph /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 33 |
32
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 34 |
27 29 33
|
fprodser |
|- ( ( ph /\ j e. Z ) -> prod_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = ( seq M ( x. , ( k e. Z |-> A ) ) ` j ) ) |
| 35 |
26 34
|
eqtr3id |
|- ( ( ph /\ j e. Z ) -> prod_ k e. ( M ... j ) A = ( seq M ( x. , ( k e. Z |-> A ) ) ` j ) ) |
| 36 |
6 35
|
eqtr2d |
|- ( ( ph /\ j e. Z ) -> ( seq M ( x. , ( k e. Z |-> A ) ) ` j ) = ( F ` j ) ) |
| 37 |
1 16 4 2 36
|
climeq |
|- ( ph -> ( seq M ( x. , ( k e. Z |-> A ) ) ~~> x <-> F ~~> x ) ) |
| 38 |
37
|
iotabidv |
|- ( ph -> ( iota x seq M ( x. , ( k e. Z |-> A ) ) ~~> x ) = ( iota x F ~~> x ) ) |
| 39 |
|
df-fv |
|- ( ~~> ` seq M ( x. , ( k e. Z |-> A ) ) ) = ( iota x seq M ( x. , ( k e. Z |-> A ) ) ~~> x ) |
| 40 |
|
df-fv |
|- ( ~~> ` F ) = ( iota x F ~~> x ) |
| 41 |
38 39 40
|
3eqtr4g |
|- ( ph -> ( ~~> ` seq M ( x. , ( k e. Z |-> A ) ) ) = ( ~~> ` F ) ) |
| 42 |
14 41
|
eqtrd |
|- ( ph -> prod_ k e. Z A = ( ~~> ` F ) ) |
| 43 |
8 42
|
breqtrrd |
|- ( ph -> F ~~> prod_ k e. Z A ) |