| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodcl.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
iprodcl.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
iprodcl.3 |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
| 4 |
|
iprodcl.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
| 5 |
|
iprodcl.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 6 |
1 2 3 4 5
|
iprod |
|- ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) ) |
| 7 |
|
fclim |
|- ~~> : dom ~~> --> CC |
| 8 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 9 |
1 3 8
|
ntrivcvg |
|- ( ph -> seq M ( x. , F ) e. dom ~~> ) |
| 10 |
|
ffvelcdm |
|- ( ( ~~> : dom ~~> --> CC /\ seq M ( x. , F ) e. dom ~~> ) -> ( ~~> ` seq M ( x. , F ) ) e. CC ) |
| 11 |
7 9 10
|
sylancr |
|- ( ph -> ( ~~> ` seq M ( x. , F ) ) e. CC ) |
| 12 |
6 11
|
eqeltrd |
|- ( ph -> prod_ k e. Z A e. CC ) |