Metamath Proof Explorer


Theorem iprodcl

Description: The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1
|- Z = ( ZZ>= ` M )
iprodcl.2
|- ( ph -> M e. ZZ )
iprodcl.3
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
iprodcl.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
iprodcl.5
|- ( ( ph /\ k e. Z ) -> A e. CC )
Assertion iprodcl
|- ( ph -> prod_ k e. Z A e. CC )

Proof

Step Hyp Ref Expression
1 iprodcl.1
 |-  Z = ( ZZ>= ` M )
2 iprodcl.2
 |-  ( ph -> M e. ZZ )
3 iprodcl.3
 |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )
4 iprodcl.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
5 iprodcl.5
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
6 1 2 3 4 5 iprod
 |-  ( ph -> prod_ k e. Z A = ( ~~> ` seq M ( x. , F ) ) )
7 fclim
 |-  ~~> : dom ~~> --> CC
8 4 5 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
9 1 3 8 ntrivcvg
 |-  ( ph -> seq M ( x. , F ) e. dom ~~> )
10 ffvelrn
 |-  ( ( ~~> : dom ~~> --> CC /\ seq M ( x. , F ) e. dom ~~> ) -> ( ~~> ` seq M ( x. , F ) ) e. CC )
11 7 9 10 sylancr
 |-  ( ph -> ( ~~> ` seq M ( x. , F ) ) e. CC )
12 6 11 eqeltrd
 |-  ( ph -> prod_ k e. Z A e. CC )