Metamath Proof Explorer


Theorem iprodcl

Description: The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1 Z=M
iprodcl.2 φM
iprodcl.3 φnZyy0seqn×Fy
iprodcl.4 φkZFk=A
iprodcl.5 φkZA
Assertion iprodcl φkZA

Proof

Step Hyp Ref Expression
1 iprodcl.1 Z=M
2 iprodcl.2 φM
3 iprodcl.3 φnZyy0seqn×Fy
4 iprodcl.4 φkZFk=A
5 iprodcl.5 φkZA
6 1 2 3 4 5 iprod φkZA=seqM×F
7 fclim :dom
8 4 5 eqeltrd φkZFk
9 1 3 8 ntrivcvg φseqM×Fdom
10 ffvelcdm :domseqM×FdomseqM×F
11 7 9 10 sylancr φseqM×F
12 6 11 eqeltrd φkZA