Metamath Proof Explorer


Theorem iprodrecl

Description: The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1 Z=M
iprodcl.2 φM
iprodcl.3 φnZyy0seqn×Fy
iprodcl.4 φkZFk=A
iprodrecl.5 φkZA
Assertion iprodrecl φkZA

Proof

Step Hyp Ref Expression
1 iprodcl.1 Z=M
2 iprodcl.2 φM
3 iprodcl.3 φnZyy0seqn×Fy
4 iprodcl.4 φkZFk=A
5 iprodrecl.5 φkZA
6 5 recnd φkZA
7 1 2 3 4 6 iprodclim2 φseqM×FkZA
8 4 5 eqeltrd φkZFk
9 remulcl kxkx
10 9 adantl φkxkx
11 1 2 8 10 seqf φseqM×F:Z
12 11 ffvelcdmda φjZseqM×Fj
13 1 2 7 12 climrecl φkZA