Metamath Proof Explorer


Theorem iprodrecl

Description: The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1 𝑍 = ( ℤ𝑀 )
iprodcl.2 ( 𝜑𝑀 ∈ ℤ )
iprodcl.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
iprodcl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
iprodrecl.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
Assertion iprodrecl ( 𝜑 → ∏ 𝑘𝑍 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 iprodcl.1 𝑍 = ( ℤ𝑀 )
2 iprodcl.2 ( 𝜑𝑀 ∈ ℤ )
3 iprodcl.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
4 iprodcl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
5 iprodrecl.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
6 5 recnd ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
7 1 2 3 4 6 iprodclim2 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ∏ 𝑘𝑍 𝐴 )
8 4 5 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
9 remulcl ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ )
10 9 adantl ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑘 · 𝑥 ) ∈ ℝ )
11 1 2 8 10 seqf ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℝ )
12 11 ffvelrnda ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℝ )
13 1 2 7 12 climrecl ( 𝜑 → ∏ 𝑘𝑍 𝐴 ∈ ℝ )