| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodmul.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iprodmul.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | iprodmul.3 | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  𝑍 ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  𝐹 )  ⇝  𝑦 ) ) | 
						
							| 4 |  | iprodmul.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 5 |  | iprodmul.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | iprodmul.6 | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  𝑍 ∃ 𝑧 ( 𝑧  ≠  0  ∧  seq 𝑚 (  ·  ,  𝐺 )  ⇝  𝑧 ) ) | 
						
							| 7 |  | iprodmul.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 8 |  | iprodmul.8 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 9 | 4 5 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 10 | 7 8 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑎  =  𝑘  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑎  =  𝑘  →  ( 𝐺 ‘ 𝑎 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑎  =  𝑘  →  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) )  =  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 15 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  V | 
						
							| 16 | 13 14 15 | fvmpt | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 18 | 1 3 9 6 10 17 | ntrivcvgmul | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝑍 ∃ 𝑤 ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) )  ⇝  𝑤 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑚  =  𝑎  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑚  =  𝑎  →  ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑎 ) ) | 
						
							| 21 | 19 20 | oveq12d | ⊢ ( 𝑚  =  𝑎  →  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) )  =  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 22 | 21 | cbvmptv | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) )  =  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 23 |  | seqeq3 | ⊢ ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) )  =  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) )  →  seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  =  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  =  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) ) | 
						
							| 25 | 24 | breq1i | ⊢ ( seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ⇝  𝑤  ↔  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) )  ⇝  𝑤 ) | 
						
							| 26 | 25 | anbi2i | ⊢ ( ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ⇝  𝑤 )  ↔  ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) )  ⇝  𝑤 ) ) | 
						
							| 27 | 26 | exbii | ⊢ ( ∃ 𝑤 ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ⇝  𝑤 )  ↔  ∃ 𝑤 ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) )  ⇝  𝑤 ) ) | 
						
							| 28 | 27 | rexbii | ⊢ ( ∃ 𝑝  ∈  𝑍 ∃ 𝑤 ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ⇝  𝑤 )  ↔  ∃ 𝑝  ∈  𝑍 ∃ 𝑤 ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑎  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑎 )  ·  ( 𝐺 ‘ 𝑎 ) ) ) )  ⇝  𝑤 ) ) | 
						
							| 29 | 18 28 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝑍 ∃ 𝑤 ( 𝑤  ≠  0  ∧  seq 𝑝 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ⇝  𝑤 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 33 | 31 32 | oveq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 ) | 
						
							| 35 | 9 10 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 36 | 30 33 34 35 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 37 | 4 7 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 38 | 36 37 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 39 | 5 8 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 40 | 1 2 3 4 5 | iprodclim2 | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ⇝  ∏ 𝑘  ∈  𝑍 𝐴 ) | 
						
							| 41 |  | seqex | ⊢ seq 𝑀 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ∈  V ) | 
						
							| 43 | 1 2 6 7 8 | iprodclim2 | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐺 )  ⇝  ∏ 𝑘  ∈  𝑍 𝐵 ) | 
						
							| 44 | 1 2 9 | prodf | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 ) : 𝑍 ⟶ ℂ ) | 
						
							| 45 | 44 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 46 | 1 2 10 | prodf | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐺 ) : 𝑍 ⟶ ℂ ) | 
						
							| 47 | 46 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  ·  ,  𝐺 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 49 | 48 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 50 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 51 | 50 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  𝑘  ∈  𝑍 ) | 
						
							| 52 | 51 9 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 53 | 52 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 54 | 51 10 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 55 | 54 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 56 | 36 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 57 | 51 56 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 58 | 49 53 55 57 | prodfmul | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 )  =  ( ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑗 )  ·  ( seq 𝑀 (  ·  ,  𝐺 ) ‘ 𝑗 ) ) ) | 
						
							| 59 | 1 2 40 42 43 45 47 58 | climmul | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 )  ·  ( 𝐺 ‘ 𝑚 ) ) ) )  ⇝  ( ∏ 𝑘  ∈  𝑍 𝐴  ·  ∏ 𝑘  ∈  𝑍 𝐵 ) ) | 
						
							| 60 | 1 2 29 38 39 59 | iprodclim | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑍 ( 𝐴  ·  𝐵 )  =  ( ∏ 𝑘  ∈  𝑍 𝐴  ·  ∏ 𝑘  ∈  𝑍 𝐵 ) ) |