| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iprodmul.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iprodmul.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | iprodmul.3 |  |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) | 
						
							| 4 |  | iprodmul.4 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) | 
						
							| 5 |  | iprodmul.5 |  |-  ( ( ph /\ k e. Z ) -> A e. CC ) | 
						
							| 6 |  | iprodmul.6 |  |-  ( ph -> E. m e. Z E. z ( z =/= 0 /\ seq m ( x. , G ) ~~> z ) ) | 
						
							| 7 |  | iprodmul.7 |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) | 
						
							| 8 |  | iprodmul.8 |  |-  ( ( ph /\ k e. Z ) -> B e. CC ) | 
						
							| 9 | 4 5 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 10 | 7 8 | eqeltrd |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) | 
						
							| 11 |  | fveq2 |  |-  ( a = k -> ( F ` a ) = ( F ` k ) ) | 
						
							| 12 |  | fveq2 |  |-  ( a = k -> ( G ` a ) = ( G ` k ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( a = k -> ( ( F ` a ) x. ( G ` a ) ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 14 |  | eqid |  |-  ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) = ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) | 
						
							| 15 |  | ovex |  |-  ( ( F ` k ) x. ( G ` k ) ) e. _V | 
						
							| 16 | 13 14 15 | fvmpt |  |-  ( k e. Z -> ( ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ k e. Z ) -> ( ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 18 | 1 3 9 6 10 17 | ntrivcvgmul |  |-  ( ph -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) | 
						
							| 19 |  | fveq2 |  |-  ( m = a -> ( F ` m ) = ( F ` a ) ) | 
						
							| 20 |  | fveq2 |  |-  ( m = a -> ( G ` m ) = ( G ` a ) ) | 
						
							| 21 | 19 20 | oveq12d |  |-  ( m = a -> ( ( F ` m ) x. ( G ` m ) ) = ( ( F ` a ) x. ( G ` a ) ) ) | 
						
							| 22 | 21 | cbvmptv |  |-  ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) = ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) | 
						
							| 23 |  | seqeq3 |  |-  ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) = ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) -> seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) = seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) = seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) | 
						
							| 25 | 24 | breq1i |  |-  ( seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w <-> seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) | 
						
							| 26 | 25 | anbi2i |  |-  ( ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) <-> ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) | 
						
							| 27 | 26 | exbii |  |-  ( E. w ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) <-> E. w ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) | 
						
							| 28 | 27 | rexbii |  |-  ( E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) <-> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( a e. Z |-> ( ( F ` a ) x. ( G ` a ) ) ) ) ~~> w ) ) | 
						
							| 29 | 18 28 | sylibr |  |-  ( ph -> E. p e. Z E. w ( w =/= 0 /\ seq p ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> w ) ) | 
						
							| 30 |  | eqid |  |-  ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) = ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) | 
						
							| 31 |  | fveq2 |  |-  ( m = k -> ( F ` m ) = ( F ` k ) ) | 
						
							| 32 |  | fveq2 |  |-  ( m = k -> ( G ` m ) = ( G ` k ) ) | 
						
							| 33 | 31 32 | oveq12d |  |-  ( m = k -> ( ( F ` m ) x. ( G ` m ) ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ k e. Z ) -> k e. Z ) | 
						
							| 35 | 9 10 | mulcld |  |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( G ` k ) ) e. CC ) | 
						
							| 36 | 30 33 34 35 | fvmptd3 |  |-  ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 37 | 4 7 | oveq12d |  |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( G ` k ) ) = ( A x. B ) ) | 
						
							| 38 | 36 37 | eqtrd |  |-  ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( A x. B ) ) | 
						
							| 39 | 5 8 | mulcld |  |-  ( ( ph /\ k e. Z ) -> ( A x. B ) e. CC ) | 
						
							| 40 | 1 2 3 4 5 | iprodclim2 |  |-  ( ph -> seq M ( x. , F ) ~~> prod_ k e. Z A ) | 
						
							| 41 |  | seqex |  |-  seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) e. _V | 
						
							| 42 | 41 | a1i |  |-  ( ph -> seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) e. _V ) | 
						
							| 43 | 1 2 6 7 8 | iprodclim2 |  |-  ( ph -> seq M ( x. , G ) ~~> prod_ k e. Z B ) | 
						
							| 44 | 1 2 9 | prodf |  |-  ( ph -> seq M ( x. , F ) : Z --> CC ) | 
						
							| 45 | 44 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( seq M ( x. , F ) ` j ) e. CC ) | 
						
							| 46 | 1 2 10 | prodf |  |-  ( ph -> seq M ( x. , G ) : Z --> CC ) | 
						
							| 47 | 46 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( seq M ( x. , G ) ` j ) e. CC ) | 
						
							| 48 |  | simpr |  |-  ( ( ph /\ j e. Z ) -> j e. Z ) | 
						
							| 49 | 48 1 | eleqtrdi |  |-  ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) | 
						
							| 50 |  | elfzuz |  |-  ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 51 | 50 1 | eleqtrrdi |  |-  ( k e. ( M ... j ) -> k e. Z ) | 
						
							| 52 | 51 9 | sylan2 |  |-  ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) | 
						
							| 53 | 52 | adantlr |  |-  ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) | 
						
							| 54 | 51 10 | sylan2 |  |-  ( ( ph /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) | 
						
							| 55 | 54 | adantlr |  |-  ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) | 
						
							| 56 | 36 | adantlr |  |-  ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 57 | 51 56 | sylan2 |  |-  ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) | 
						
							| 58 | 49 53 55 57 | prodfmul |  |-  ( ( ph /\ j e. Z ) -> ( seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ` j ) = ( ( seq M ( x. , F ) ` j ) x. ( seq M ( x. , G ) ` j ) ) ) | 
						
							| 59 | 1 2 40 42 43 45 47 58 | climmul |  |-  ( ph -> seq M ( x. , ( m e. Z |-> ( ( F ` m ) x. ( G ` m ) ) ) ) ~~> ( prod_ k e. Z A x. prod_ k e. Z B ) ) | 
						
							| 60 | 1 2 29 38 39 59 | iprodclim |  |-  ( ph -> prod_ k e. Z ( A x. B ) = ( prod_ k e. Z A x. prod_ k e. Z B ) ) |