| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodfmul.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
prodfmul.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
| 3 |
|
prodfmul.3 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
| 4 |
|
prodfmul.4 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
| 5 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
| 7 |
|
mulcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) |
| 9 |
|
mulass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 11 |
6 8 10 1 2 3 4
|
seqcaopr |
|- ( ph -> ( seq M ( x. , H ) ` N ) = ( ( seq M ( x. , F ) ` N ) x. ( seq M ( x. , G ) ` N ) ) ) |