| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodcl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
iprodcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
iprodcl.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 4 |
|
iprodcl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 5 |
|
iprodcl.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 6 |
1 2 3 4 5
|
iprod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
| 7 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
| 8 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 9 |
1 3 8
|
ntrivcvg |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
| 10 |
|
ffvelcdm |
⊢ ( ( ⇝ : dom ⇝ ⟶ ℂ ∧ seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ∈ ℂ ) |
| 11 |
7 9 10
|
sylancr |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ∈ ℂ ) |
| 12 |
6 11
|
eqeltrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |