Metamath Proof Explorer


Theorem is1stc2

Description: An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009) (Revised by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis is1stc.1 𝑋 = 𝐽
Assertion is1stc2 ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 is1stc.1 𝑋 = 𝐽
2 1 is1stc ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) )
3 elin ( 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ( 𝑤𝑦𝑤 ∈ 𝒫 𝑧 ) )
4 velpw ( 𝑤 ∈ 𝒫 𝑧𝑤𝑧 )
5 4 anbi2i ( ( 𝑤𝑦𝑤 ∈ 𝒫 𝑧 ) ↔ ( 𝑤𝑦𝑤𝑧 ) )
6 3 5 bitri ( 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ( 𝑤𝑦𝑤𝑧 ) )
7 6 anbi2i ( ( 𝑥𝑤𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑥𝑤 ∧ ( 𝑤𝑦𝑤𝑧 ) ) )
8 an12 ( ( 𝑥𝑤 ∧ ( 𝑤𝑦𝑤𝑧 ) ) ↔ ( 𝑤𝑦 ∧ ( 𝑥𝑤𝑤𝑧 ) ) )
9 7 8 bitri ( ( 𝑥𝑤𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑤𝑦 ∧ ( 𝑥𝑤𝑤𝑧 ) ) )
10 9 exbii ( ∃ 𝑤 ( 𝑥𝑤𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ∃ 𝑤 ( 𝑤𝑦 ∧ ( 𝑥𝑤𝑤𝑧 ) ) )
11 eluni ( 𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ∃ 𝑤 ( 𝑥𝑤𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) )
12 df-rex ( ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ↔ ∃ 𝑤 ( 𝑤𝑦 ∧ ( 𝑥𝑤𝑤𝑧 ) ) )
13 10 11 12 3bitr4i ( 𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) )
14 13 imbi2i ( ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) )
15 14 ralbii ( ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) )
16 15 anbi2i ( ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
17 16 rexbii ( ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
18 17 ralbii ( ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) )
19 18 anbi2i ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) ) )
20 2 19 bitri ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧 → ∃ 𝑤𝑦 ( 𝑥𝑤𝑤𝑧 ) ) ) ) )