Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem40.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
2 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) → 𝑓 : ω ⟶ 𝒫 𝐺 ) |
3 |
|
isf32lem11 |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓 ) ) → ω ≼* 𝐺 ) |
4 |
3
|
expcom |
⊢ ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓 ) → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ∧ ¬ ∩ ran 𝑓 ∈ ran 𝑓 ) → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
6 |
5
|
impancom |
⊢ ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ∧ 𝐺 ∈ 𝑉 ) → ( ¬ ∩ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺 ) ) |
7 |
6
|
con1d |
⊢ ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ∧ 𝐺 ∈ 𝑉 ) → ( ¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
8 |
7
|
exp31 |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐺 → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) ) |
9 |
2 8
|
syl |
⊢ ( 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) ) |
10 |
9
|
com4t |
⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ( 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) ) |
11 |
10
|
ralrimdv |
⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → ∀ 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
12 |
1
|
isfin3ds |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐺 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
13 |
11 12
|
sylibrd |
⊢ ( 𝐺 ∈ 𝑉 → ( ¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹 ) ) |