Metamath Proof Explorer


Theorem isf32lem12

Description: Lemma for isfin3-2 . (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis isf32lem40.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
Assertion isf32lem12 ( 𝐺𝑉 → ( ¬ ω ≼* 𝐺𝐺𝐹 ) )

Proof

Step Hyp Ref Expression
1 isf32lem40.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
2 elmapi ( 𝑓 ∈ ( 𝒫 𝐺m ω ) → 𝑓 : ω ⟶ 𝒫 𝐺 )
3 isf32lem11 ( ( 𝐺𝑉 ∧ ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) ∧ ¬ ran 𝑓 ∈ ran 𝑓 ) ) → ω ≼* 𝐺 )
4 3 expcom ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) ∧ ¬ ran 𝑓 ∈ ran 𝑓 ) → ( 𝐺𝑉 → ω ≼* 𝐺 ) )
5 4 3expa ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) ) ∧ ¬ ran 𝑓 ∈ ran 𝑓 ) → ( 𝐺𝑉 → ω ≼* 𝐺 ) )
6 5 impancom ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) ) ∧ 𝐺𝑉 ) → ( ¬ ran 𝑓 ∈ ran 𝑓 → ω ≼* 𝐺 ) )
7 6 con1d ( ( ( 𝑓 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) ) ∧ 𝐺𝑉 ) → ( ¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓 ) )
8 7 exp31 ( 𝑓 : ω ⟶ 𝒫 𝐺 → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) → ( 𝐺𝑉 → ( ¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓 ) ) ) )
9 2 8 syl ( 𝑓 ∈ ( 𝒫 𝐺m ω ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) → ( 𝐺𝑉 → ( ¬ ω ≼* 𝐺 ran 𝑓 ∈ ran 𝑓 ) ) ) )
10 9 com4t ( 𝐺𝑉 → ( ¬ ω ≼* 𝐺 → ( 𝑓 ∈ ( 𝒫 𝐺m ω ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) → ran 𝑓 ∈ ran 𝑓 ) ) ) )
11 10 ralrimdv ( 𝐺𝑉 → ( ¬ ω ≼* 𝐺 → ∀ 𝑓 ∈ ( 𝒫 𝐺m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) → ran 𝑓 ∈ ran 𝑓 ) ) )
12 1 isfin3ds ( 𝐺𝑉 → ( 𝐺𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐺m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓𝑏 ) → ran 𝑓 ∈ ran 𝑓 ) ) )
13 11 12 sylibrd ( 𝐺𝑉 → ( ¬ ω ≼* 𝐺𝐺𝐹 ) )