Step |
Hyp |
Ref |
Expression |
1 |
|
isfin3 |
⊢ ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV ) |
2 |
|
isfin4-2 |
⊢ ( 𝒫 𝐴 ∈ FinIV → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) |
3 |
2
|
ibi |
⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴 ) |
4 |
|
relwdom |
⊢ Rel ≼* |
5 |
4
|
brrelex1i |
⊢ ( ω ≼* 𝐴 → ω ∈ V ) |
6 |
|
canth2g |
⊢ ( ω ∈ V → ω ≺ 𝒫 ω ) |
7 |
|
sdomdom |
⊢ ( ω ≺ 𝒫 ω → ω ≼ 𝒫 ω ) |
8 |
5 6 7
|
3syl |
⊢ ( ω ≼* 𝐴 → ω ≼ 𝒫 ω ) |
9 |
|
wdompwdom |
⊢ ( ω ≼* 𝐴 → 𝒫 ω ≼ 𝒫 𝐴 ) |
10 |
|
domtr |
⊢ ( ( ω ≼ 𝒫 ω ∧ 𝒫 ω ≼ 𝒫 𝐴 ) → ω ≼ 𝒫 𝐴 ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ω ≼* 𝐴 → ω ≼ 𝒫 𝐴 ) |
12 |
3 11
|
nsyl |
⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼* 𝐴 ) |
13 |
1 12
|
sylbi |
⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼* 𝐴 ) |