Metamath Proof Explorer


Theorem isfin3-2

Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto _om . (Contributed by Stefan O'Rear, 6-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin3-2 ( 𝐴𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isfin32i ( 𝐴 ∈ FinIII → ¬ ω ≼* 𝐴 )
2 isf33lem FinIII = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
3 2 isf32lem12 ( 𝐴𝑉 → ( ¬ ω ≼* 𝐴𝐴 ∈ FinIII ) )
4 1 3 impbid2 ( 𝐴𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) )