Metamath Proof Explorer


Theorem isfusgrcl

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 9-Jan-2020)

Ref Expression
Assertion isfusgrcl ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 1 isfusgr ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) ∈ Fin ) )
3 fvex ( Vtx ‘ 𝐺 ) ∈ V
4 hashclb ( ( Vtx ‘ 𝐺 ) ∈ V → ( ( Vtx ‘ 𝐺 ) ∈ Fin ↔ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) )
5 3 4 mp1i ( 𝐺 ∈ USGraph → ( ( Vtx ‘ 𝐺 ) ∈ Fin ↔ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) )
6 5 pm5.32i ( ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) ∈ Fin ) ↔ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) )
7 2 6 bitri ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) )