Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfusgrcl | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | isfusgr | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) ∈ Fin ) ) | 
| 3 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 4 | hashclb | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ V → ( ( Vtx ‘ 𝐺 ) ∈ Fin ↔ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝐺 ∈ USGraph → ( ( Vtx ‘ 𝐺 ) ∈ Fin ↔ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) ) | 
| 6 | 5 | pm5.32i | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) ∈ Fin ) ↔ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) ) | 
| 7 | 2 6 | bitri | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) ∈ ℕ0 ) ) |