Metamath Proof Explorer


Theorem ispisys

Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020)

Ref Expression
Hypothesis ispisys.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
Assertion ispisys ( 𝑆𝑃 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑆 ) ⊆ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ispisys.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
2 fveq2 ( 𝑠 = 𝑆 → ( fi ‘ 𝑠 ) = ( fi ‘ 𝑆 ) )
3 id ( 𝑠 = 𝑆𝑠 = 𝑆 )
4 2 3 sseq12d ( 𝑠 = 𝑆 → ( ( fi ‘ 𝑠 ) ⊆ 𝑠 ↔ ( fi ‘ 𝑆 ) ⊆ 𝑆 ) )
5 4 1 elrab2 ( 𝑆𝑃 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑆 ) ⊆ 𝑆 ) )