Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ispisys.p | ⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } | |
| Assertion | ispisys | ⊢ ( 𝑆 ∈ 𝑃 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑆 ) ⊆ 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ispisys.p | ⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } | |
| 2 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( fi ‘ 𝑠 ) = ( fi ‘ 𝑆 ) ) | |
| 3 | id | ⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) | |
| 4 | 2 3 | sseq12d | ⊢ ( 𝑠 = 𝑆 → ( ( fi ‘ 𝑠 ) ⊆ 𝑠 ↔ ( fi ‘ 𝑆 ) ⊆ 𝑆 ) ) | 
| 5 | 4 1 | elrab2 | ⊢ ( 𝑆 ∈ 𝑃 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( fi ‘ 𝑆 ) ⊆ 𝑆 ) ) |