| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispoint.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
ispoint.p |
⊢ 𝑃 = ( Points ‘ 𝐾 ) |
| 3 |
1 2
|
pointsetN |
⊢ ( 𝐾 ∈ 𝐷 → 𝑃 = { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = { 𝑎 } } ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑃 ↔ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = { 𝑎 } } ) ) |
| 5 |
|
vsnex |
⊢ { 𝑎 } ∈ V |
| 6 |
|
eleq1 |
⊢ ( 𝑋 = { 𝑎 } → ( 𝑋 ∈ V ↔ { 𝑎 } ∈ V ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝑋 = { 𝑎 } → 𝑋 ∈ V ) |
| 8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑎 ∈ 𝐴 𝑋 = { 𝑎 } → 𝑋 ∈ V ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = { 𝑎 } ↔ 𝑋 = { 𝑎 } ) ) |
| 10 |
9
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑎 ∈ 𝐴 𝑥 = { 𝑎 } ↔ ∃ 𝑎 ∈ 𝐴 𝑋 = { 𝑎 } ) ) |
| 11 |
8 10
|
elab3 |
⊢ ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = { 𝑎 } } ↔ ∃ 𝑎 ∈ 𝐴 𝑋 = { 𝑎 } ) |
| 12 |
4 11
|
bitrdi |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑃 ↔ ∃ 𝑎 ∈ 𝐴 𝑋 = { 𝑎 } ) ) |