Metamath Proof Explorer


Theorem issmo

Description: Conditions for which A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011) Avoid ax-13 . (Revised by Gino Giotto, 19-May-2023)

Ref Expression
Hypotheses issmo.1 𝐴 : 𝐵 ⟶ On
issmo.2 Ord 𝐵
issmo.3 ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥𝑦 → ( 𝐴𝑥 ) ∈ ( 𝐴𝑦 ) ) )
issmo.4 dom 𝐴 = 𝐵
Assertion issmo Smo 𝐴

Proof

Step Hyp Ref Expression
1 issmo.1 𝐴 : 𝐵 ⟶ On
2 issmo.2 Ord 𝐵
3 issmo.3 ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥𝑦 → ( 𝐴𝑥 ) ∈ ( 𝐴𝑦 ) ) )
4 issmo.4 dom 𝐴 = 𝐵
5 4 feq2i ( 𝐴 : dom 𝐴 ⟶ On ↔ 𝐴 : 𝐵 ⟶ On )
6 1 5 mpbir 𝐴 : dom 𝐴 ⟶ On
7 ordeq ( dom 𝐴 = 𝐵 → ( Ord dom 𝐴 ↔ Ord 𝐵 ) )
8 4 7 ax-mp ( Ord dom 𝐴 ↔ Ord 𝐵 )
9 2 8 mpbir Ord dom 𝐴
10 4 eleq2i ( 𝑥 ∈ dom 𝐴𝑥𝐵 )
11 4 eleq2i ( 𝑦 ∈ dom 𝐴𝑦𝐵 )
12 10 11 3 syl2anb ( ( 𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴 ) → ( 𝑥𝑦 → ( 𝐴𝑥 ) ∈ ( 𝐴𝑦 ) ) )
13 12 rgen2 𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴 ( 𝑥𝑦 → ( 𝐴𝑥 ) ∈ ( 𝐴𝑦 ) )
14 df-smo ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴 ( 𝑥𝑦 → ( 𝐴𝑥 ) ∈ ( 𝐴𝑦 ) ) ) )
15 6 9 13 14 mpbir3an Smo 𝐴