Description: A topological space is T_1 iff it is both T_0 and R_0. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ist1-5 | ⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1t0 | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) | |
| 2 | t1hmph | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre ) ) | |
| 3 | t1hmph | ⊢ ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ Fre → 𝐽 ∈ Fre ) ) | |
| 4 | 1 2 3 | ist1-5lem | ⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ) |