Metamath Proof Explorer


Theorem t1t0

Description: A T_1 space is a T_0 space. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion t1t0 ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )

Proof

Step Hyp Ref Expression
1 t1top ( 𝐽 ∈ Fre → 𝐽 ∈ Top )
2 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
3 1 2 sylib ( 𝐽 ∈ Fre → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
4 biimp ( ( 𝑥𝑜𝑦𝑜 ) → ( 𝑥𝑜𝑦𝑜 ) )
5 4 ralimi ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) )
6 5 imim1i ( ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) )
7 6 ralimi ( ∀ 𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) )
8 7 ralimi ( ∀ 𝑥 𝐽𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 𝐽𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) )
9 8 a1i ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( ∀ 𝑥 𝐽𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 𝐽𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
10 ist1-2 ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 𝐽𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
11 ist0-2 ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 𝐽𝑦 𝐽 ( ∀ 𝑜𝐽 ( 𝑥𝑜𝑦𝑜 ) → 𝑥 = 𝑦 ) ) )
12 9 10 11 3imtr4d ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) )
13 3 12 mpcom ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )