Metamath Proof Explorer


Theorem t1t0

Description: A T_1 space is a T_0 space. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion t1t0 JFreJKol2

Proof

Step Hyp Ref Expression
1 t1top JFreJTop
2 toptopon2 JTopJTopOnJ
3 1 2 sylib JFreJTopOnJ
4 biimp xoyoxoyo
5 4 ralimi oJxoyooJxoyo
6 5 imim1i oJxoyox=yoJxoyox=y
7 6 ralimi yJoJxoyox=yyJoJxoyox=y
8 7 ralimi xJyJoJxoyox=yxJyJoJxoyox=y
9 8 a1i JTopOnJxJyJoJxoyox=yxJyJoJxoyox=y
10 ist1-2 JTopOnJJFrexJyJoJxoyox=y
11 ist0-2 JTopOnJJKol2xJyJoJxoyox=y
12 9 10 11 3imtr4d JTopOnJJFreJKol2
13 3 12 mpcom JFreJKol2