Description: A T_1 space is a T_0 space. (Contributed by Jeff Hankins, 1-Feb-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | t1t0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1top | |
|
2 | toptopon2 | |
|
3 | 1 2 | sylib | |
4 | biimp | |
|
5 | 4 | ralimi | |
6 | 5 | imim1i | |
7 | 6 | ralimi | |
8 | 7 | ralimi | |
9 | 8 | a1i | |
10 | ist1-2 | |
|
11 | ist0-2 | |
|
12 | 9 10 11 | 3imtr4d | |
13 | 3 12 | mpcom | |