Metamath Proof Explorer


Theorem ist0-2

Description: The predicate "is a T_0 space". (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ist0-2 JTopOnXJKol2xXyXoJxoyox=y

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 eqid J=J
3 2 ist0 JKol2JTopxJyJoJxoyox=y
4 3 baib JTopJKol2xJyJoJxoyox=y
5 1 4 syl JTopOnXJKol2xJyJoJxoyox=y
6 toponuni JTopOnXX=J
7 6 raleqdv JTopOnXyXoJxoyox=yyJoJxoyox=y
8 6 7 raleqbidv JTopOnXxXyXoJxoyox=yxJyJoJxoyox=y
9 5 8 bitr4d JTopOnXJKol2xXyXoJxoyox=y