| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ist1-2 | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ∈  Fre  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 2 |  | toponmax | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  ∈  𝐽 ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑜  =  𝑋  →  ( 𝑥  ∈  𝑜  ↔  𝑥  ∈  𝑋 ) ) | 
						
							| 4 | 3 | intminss | ⊢ ( ( 𝑋  ∈  𝐽  ∧  𝑥  ∈  𝑋 )  →  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ⊆  𝑋 ) | 
						
							| 5 | 2 4 | sylan | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ⊆  𝑋 ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } )  →  𝑦  ∈  𝑋 ) | 
						
							| 7 |  | biimt | ⊢ ( 𝑦  ∈  𝑋  →  ( 𝑦  ∈  { 𝑥 }  ↔  ( 𝑦  ∈  𝑋  →  𝑦  ∈  { 𝑥 } ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } )  →  ( 𝑦  ∈  { 𝑥 }  ↔  ( 𝑦  ∈  𝑋  →  𝑦  ∈  { 𝑥 } ) ) ) | 
						
							| 9 | 8 | ralbidva | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ∀ 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } 𝑦  ∈  { 𝑥 }  ↔  ∀ 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } ( 𝑦  ∈  𝑋  →  𝑦  ∈  { 𝑥 } ) ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  ∈  𝑜  →  𝑥  ∈  𝑜 ) | 
						
							| 11 | 10 | rgenw | ⊢ ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑥  ∈  𝑜 ) | 
						
							| 12 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 13 | 12 | elintrab | ⊢ ( 𝑥  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ↔  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑥  ∈  𝑜 ) ) | 
						
							| 14 | 11 13 | mpbir | ⊢ 𝑥  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } | 
						
							| 15 |  | snssi | ⊢ ( 𝑥  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  →  { 𝑥 }  ⊆  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ { 𝑥 }  ⊆  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } | 
						
							| 17 |  | eqss | ⊢ ( ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  =  { 𝑥 }  ↔  ( ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ⊆  { 𝑥 }  ∧  { 𝑥 }  ⊆  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } ) ) | 
						
							| 18 | 16 17 | mpbiran2 | ⊢ ( ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  =  { 𝑥 }  ↔  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ⊆  { 𝑥 } ) | 
						
							| 19 |  | dfss3 | ⊢ ( ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ⊆  { 𝑥 }  ↔  ∀ 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } 𝑦  ∈  { 𝑥 } ) | 
						
							| 20 | 18 19 | bitri | ⊢ ( ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  =  { 𝑥 }  ↔  ∀ 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } 𝑦  ∈  { 𝑥 } ) | 
						
							| 21 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 22 | 21 | elintrab | ⊢ ( 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  ↔  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 ) ) | 
						
							| 23 |  | velsn | ⊢ ( 𝑦  ∈  { 𝑥 }  ↔  𝑦  =  𝑥 ) | 
						
							| 24 |  | equcom | ⊢ ( 𝑦  =  𝑥  ↔  𝑥  =  𝑦 ) | 
						
							| 25 | 23 24 | bitri | ⊢ ( 𝑦  ∈  { 𝑥 }  ↔  𝑥  =  𝑦 ) | 
						
							| 26 | 22 25 | imbi12i | ⊢ ( ( 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  →  𝑦  ∈  { 𝑥 } )  ↔  ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) | 
						
							| 27 | 26 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑋 ( 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  →  𝑦  ∈  { 𝑥 } )  ↔  ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) | 
						
							| 28 |  | ralcom3 | ⊢ ( ∀ 𝑦  ∈  𝑋 ( 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  →  𝑦  ∈  { 𝑥 } )  ↔  ∀ 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } ( 𝑦  ∈  𝑋  →  𝑦  ∈  { 𝑥 } ) ) | 
						
							| 29 | 27 28 | bitr3i | ⊢ ( ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 } ( 𝑦  ∈  𝑋  →  𝑦  ∈  { 𝑥 } ) ) | 
						
							| 30 | 9 20 29 | 3bitr4g | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  =  { 𝑥 }  ↔  ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 31 | 30 | ralbidva | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  =  { 𝑥 }  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  𝑦  ∈  𝑜 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 32 | 1 31 | bitr4d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐽  ∈  Fre  ↔  ∀ 𝑥  ∈  𝑋 ∩  { 𝑜  ∈  𝐽  ∣  𝑥  ∈  𝑜 }  =  { 𝑥 } ) ) |