Metamath Proof Explorer


Theorem iswun

Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion iswun ( 𝑈𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )

Proof

Step Hyp Ref Expression
1 treq ( 𝑢 = 𝑈 → ( Tr 𝑢 ↔ Tr 𝑈 ) )
2 neeq1 ( 𝑢 = 𝑈 → ( 𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅ ) )
3 eleq2 ( 𝑢 = 𝑈 → ( 𝑥𝑢 𝑥𝑈 ) )
4 eleq2 ( 𝑢 = 𝑈 → ( 𝒫 𝑥𝑢 ↔ 𝒫 𝑥𝑈 ) )
5 eleq2 ( 𝑢 = 𝑈 → ( { 𝑥 , 𝑦 } ∈ 𝑢 ↔ { 𝑥 , 𝑦 } ∈ 𝑈 ) )
6 5 raleqbi1dv ( 𝑢 = 𝑈 → ( ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ↔ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) )
7 3 4 6 3anbi123d ( 𝑢 = 𝑈 → ( ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ↔ ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
8 7 raleqbi1dv ( 𝑢 = 𝑈 → ( ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ↔ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
9 1 2 8 3anbi123d ( 𝑢 = 𝑈 → ( ( Tr 𝑢𝑢 ≠ ∅ ∧ ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
10 df-wun WUni = { 𝑢 ∣ ( Tr 𝑢𝑢 ≠ ∅ ∧ ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) }
11 9 10 elab2g ( 𝑈𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )