Metamath Proof Explorer


Theorem itg2lr

Description: Sufficient condition for elementhood in the set L . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) }
Assertion itg2lr ( ( 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ∈ 𝐿 )

Proof

Step Hyp Ref Expression
1 itg2val.1 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹𝑥 = ( ∫1𝑔 ) ) }
2 eqid ( ∫1𝐺 ) = ( ∫1𝐺 )
3 breq1 ( 𝑔 = 𝐺 → ( 𝑔r𝐹𝐺r𝐹 ) )
4 fveq2 ( 𝑔 = 𝐺 → ( ∫1𝑔 ) = ( ∫1𝐺 ) )
5 4 eqeq2d ( 𝑔 = 𝐺 → ( ( ∫1𝐺 ) = ( ∫1𝑔 ) ↔ ( ∫1𝐺 ) = ( ∫1𝐺 ) ) )
6 3 5 anbi12d ( 𝑔 = 𝐺 → ( ( 𝑔r𝐹 ∧ ( ∫1𝐺 ) = ( ∫1𝑔 ) ) ↔ ( 𝐺r𝐹 ∧ ( ∫1𝐺 ) = ( ∫1𝐺 ) ) ) )
7 6 rspcev ( ( 𝐺 ∈ dom ∫1 ∧ ( 𝐺r𝐹 ∧ ( ∫1𝐺 ) = ( ∫1𝐺 ) ) ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 ∧ ( ∫1𝐺 ) = ( ∫1𝑔 ) ) )
8 2 7 mpanr2 ( ( 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 ∧ ( ∫1𝐺 ) = ( ∫1𝑔 ) ) )
9 1 itg2l ( ( ∫1𝐺 ) ∈ 𝐿 ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝐹 ∧ ( ∫1𝐺 ) = ( ∫1𝑔 ) ) )
10 8 9 sylibr ( ( 𝐺 ∈ dom ∫1𝐺r𝐹 ) → ( ∫1𝐺 ) ∈ 𝐿 )