Metamath Proof Explorer


Theorem itgsin0pi

Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion itgsin0pi ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2

Proof

Step Hyp Ref Expression
1 eqid ( 𝑡 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑡 ) ) = ( 𝑡 ∈ ( 0 [,] π ) ↦ - ( cos ‘ 𝑡 ) )
2 1 itgsin0pilem1 ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2