| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.41v | ⊢ ( ∃ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 2 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  𝐶 )  ↔  ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 )  ↔  ∃ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 4 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ∧  ¬  𝑦  ∈  𝐶 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 6 | 1 3 5 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 )  ↔  ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 7 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 ) ) | 
						
							| 8 |  | eldif | ⊢ ( 𝑦  ∈  ( ∪  𝑥  ∈  𝐴 𝐵  ∖  𝐶 )  ↔  ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 9 | 6 7 8 | 3bitr4i | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  ↔  𝑦  ∈  ( ∪  𝑥  ∈  𝐴 𝐵  ∖  𝐶 ) ) | 
						
							| 10 | 9 | eqriv | ⊢ ∪  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  =  ( ∪  𝑥  ∈  𝐴 𝐵  ∖  𝐶 ) |