Metamath Proof Explorer


Theorem iundif1

Description: Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018)

Ref Expression
Assertion iundif1 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 r19.41v ( ∃ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
2 eldif ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
3 2 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
4 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
5 4 anbi1i ( ( 𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
6 1 3 5 3bitr4i ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶 ) )
7 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
8 eldif ( 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶 ) )
9 6 7 8 3bitr4i ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) )
10 9 eqriv 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵𝐶 )