| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 2 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 3 |
2
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 4 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 5 |
4
|
anbi1i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 6 |
1 3 5
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 7 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
| 8 |
|
eldif |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 9 |
6 7 8
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶 ) ) |
| 10 |
9
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶 ) |