Description: The union U_ n e. C ( A ^m n ) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunmapdisj | ⊢ ∃* 𝑛 ∈ 𝐶 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq | ⊢ ∃* 𝑛 𝑛 = dom 𝐵 | |
| 2 | elmapi | ⊢ ( 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) → 𝐵 : 𝑛 ⟶ 𝐴 ) | |
| 3 | fdm | ⊢ ( 𝐵 : 𝑛 ⟶ 𝐴 → dom 𝐵 = 𝑛 ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝐵 : 𝑛 ⟶ 𝐴 → 𝑛 = dom 𝐵 ) |
| 5 | 2 4 | syl | ⊢ ( 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) → 𝑛 = dom 𝐵 ) |
| 6 | 5 | moimi | ⊢ ( ∃* 𝑛 𝑛 = dom 𝐵 → ∃* 𝑛 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 7 | 1 6 | ax-mp | ⊢ ∃* 𝑛 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) |
| 8 | 7 | moani | ⊢ ∃* 𝑛 ( 𝑛 ∈ 𝐶 ∧ 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 9 | df-rmo | ⊢ ( ∃* 𝑛 ∈ 𝐶 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) ↔ ∃* 𝑛 ( 𝑛 ∈ 𝐶 ∧ 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) ) ) | |
| 10 | 8 9 | mpbir | ⊢ ∃* 𝑛 ∈ 𝐶 𝐵 ∈ ( 𝐴 ↑m 𝑛 ) |