| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfixp |
⊢ X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } |
| 2 |
|
ralsnsg |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ [ 𝑋 / 𝑥 ] ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 3 |
|
sbcel12 |
⊢ ( [ 𝑋 / 𝑥 ] ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 4 |
|
csbfv2g |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 ) ) |
| 5 |
|
csbvarg |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ 𝑥 = 𝑋 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑓 ‘ ⦋ 𝑋 / 𝑥 ⦌ 𝑥 ) = ( 𝑓 ‘ 𝑋 ) ) |
| 7 |
4 6
|
eqtrd |
⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑋 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑋 ∈ 𝑉 → ( ⦋ 𝑋 / 𝑥 ⦌ ( 𝑓 ‘ 𝑥 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 9 |
3 8
|
bitrid |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑥 ] ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 10 |
2 9
|
bitrd |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 12 |
11
|
abbidv |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) } ) |
| 13 |
1 12
|
eqtrid |
⊢ ( 𝑋 ∈ 𝑉 → X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) } ) |