Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| Assertion | ixxex | ⊢ 𝑂 ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | xrex | ⊢ ℝ* ∈ V | |
| 3 | 2 2 | xpex | ⊢ ( ℝ* × ℝ* ) ∈ V | 
| 4 | 2 | pwex | ⊢ 𝒫 ℝ* ∈ V | 
| 5 | 3 4 | xpex | ⊢ ( ( ℝ* × ℝ* ) × 𝒫 ℝ* ) ∈ V | 
| 6 | 1 | ixxf | ⊢ 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | 
| 7 | fssxp | ⊢ ( 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → 𝑂 ⊆ ( ( ℝ* × ℝ* ) × 𝒫 ℝ* ) ) | |
| 8 | 6 7 | ax-mp | ⊢ 𝑂 ⊆ ( ( ℝ* × ℝ* ) × 𝒫 ℝ* ) | 
| 9 | 5 8 | ssexi | ⊢ 𝑂 ∈ V |