Metamath Proof Explorer


Theorem ixxex

Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis ixx.1
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } )
Assertion ixxex
|- O e. _V

Proof

Step Hyp Ref Expression
1 ixx.1
 |-  O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } )
2 xrex
 |-  RR* e. _V
3 2 2 xpex
 |-  ( RR* X. RR* ) e. _V
4 2 pwex
 |-  ~P RR* e. _V
5 3 4 xpex
 |-  ( ( RR* X. RR* ) X. ~P RR* ) e. _V
6 1 ixxf
 |-  O : ( RR* X. RR* ) --> ~P RR*
7 fssxp
 |-  ( O : ( RR* X. RR* ) --> ~P RR* -> O C_ ( ( RR* X. RR* ) X. ~P RR* ) )
8 6 7 ax-mp
 |-  O C_ ( ( RR* X. RR* ) X. ~P RR* )
9 5 8 ssexi
 |-  O e. _V