| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝑦 ) = ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) ) |
| 2 |
1
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝑦 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ·ih 𝑧 ) = ( 𝑥 ·ih 𝐵 ) ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) = ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 5 |
4
|
mpteq2dv |
⊢ ( 𝑧 = 𝐵 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝐴 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
| 6 |
|
df-kb |
⊢ ketbra = ( 𝑦 ∈ ℋ , 𝑧 ∈ ℋ ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝑧 ) ·ℎ 𝑦 ) ) ) |
| 7 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 8 |
7
|
mptex |
⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ∈ V |
| 9 |
2 5 6 8
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |