Metamath Proof Explorer


Theorem kbfval

Description: The outer product of two vectors, expressed as | A >. <. B | in Dirac notation. See df-kb . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion kbfval ABAketbraB=xxihBA

Proof

Step Hyp Ref Expression
1 oveq2 y=Axihzy=xihzA
2 1 mpteq2dv y=Axxihzy=xxihzA
3 oveq2 z=Bxihz=xihB
4 3 oveq1d z=BxihzA=xihBA
5 4 mpteq2dv z=BxxihzA=xxihBA
6 df-kb ketbra=y,zxxihzy
7 ax-hilex V
8 7 mptex xxihBAV
9 2 5 6 8 ovmpo ABAketbraB=xxihBA