| Step |
Hyp |
Ref |
Expression |
| 1 |
|
t0top |
⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top ) |
| 2 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
| 5 |
4
|
t0kq |
⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐽 ∈ Kol2 ↔ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐽 ∈ Kol2 → ( 𝐽 ∈ Kol2 ↔ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) ) |
| 7 |
6
|
ibi |
⊢ ( 𝐽 ∈ Kol2 → ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) |
| 8 |
|
hmphi |
⊢ ( ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) → 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐽 ∈ Kol2 → 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |
| 10 |
|
hmphsym |
⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( KQ ‘ 𝐽 ) ≃ 𝐽 ) |
| 11 |
|
hmphtop1 |
⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 12 |
|
kqt0 |
⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Kol2 ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 ) |
| 14 |
|
t0hmph |
⊢ ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ Kol2 → 𝐽 ∈ Kol2 ) ) |
| 15 |
10 13 14
|
sylc |
⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → 𝐽 ∈ Kol2 ) |
| 16 |
9 15
|
impbii |
⊢ ( 𝐽 ∈ Kol2 ↔ 𝐽 ≃ ( KQ ‘ 𝐽 ) ) |