Metamath Proof Explorer


Theorem leisorel

Description: Version of isorel for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion leisorel ( ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ∧ ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ≤ ( 𝐹𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 leiso ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) )
2 1 biimpcd ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) → ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ) )
3 isorel ( ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ≤ ( 𝐹𝐷 ) ) )
4 3 ex ( 𝐹 Isom ≤ , ≤ ( 𝐴 , 𝐵 ) → ( ( 𝐶𝐴𝐷𝐴 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ≤ ( 𝐹𝐷 ) ) ) )
5 2 4 syl6 ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) → ( ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) → ( ( 𝐶𝐴𝐷𝐴 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ≤ ( 𝐹𝐷 ) ) ) ) )
6 5 3imp ( ( 𝐹 Isom < , < ( 𝐴 , 𝐵 ) ∧ ( 𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ≤ ( 𝐹𝐷 ) ) )