| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fz1iso.1 |
⊢ 𝐺 = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) |
| 2 |
|
fz1iso.2 |
⊢ 𝐵 = ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) |
| 3 |
|
fz1iso.3 |
⊢ 𝐶 = ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 4 |
|
fz1iso.4 |
⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) |
| 5 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 8 |
|
1z |
⊢ 1 ∈ ℤ |
| 9 |
8 1
|
om2uzisoi |
⊢ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 1 ) ) |
| 10 |
|
isoeq5 |
⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( 𝐺 Isom E , < ( ω , ℕ ) ↔ 𝐺 Isom E , < ( ω , ( ℤ≥ ‘ 1 ) ) ) ) |
| 11 |
9 10
|
mpbiri |
⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → 𝐺 Isom E , < ( ω , ℕ ) ) |
| 12 |
7 11
|
ax-mp |
⊢ 𝐺 Isom E , < ( ω , ℕ ) |
| 13 |
|
isocnv |
⊢ ( 𝐺 Isom E , < ( ω , ℕ ) → ◡ 𝐺 Isom < , E ( ℕ , ω ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ◡ 𝐺 Isom < , E ( ℕ , ω ) |
| 15 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
| 16 |
|
fvex |
⊢ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ∈ V |
| 17 |
16
|
epini |
⊢ ( ◡ E “ { ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) } ) = ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 18 |
17
|
ineq2i |
⊢ ( ω ∩ ( ◡ E “ { ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) } ) ) = ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 19 |
3 18
|
eqtr4i |
⊢ 𝐶 = ( ω ∩ ( ◡ E “ { ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) } ) ) |
| 20 |
2 19
|
isoini2 |
⊢ ( ( ◡ 𝐺 Isom < , E ( ℕ , ω ) ∧ ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ ℕ ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ) |
| 21 |
14 15 20
|
sylancr |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ) |
| 22 |
6 21
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ) |
| 23 |
|
nnz |
⊢ ( 𝑓 ∈ ℕ → 𝑓 ∈ ℤ ) |
| 24 |
6
|
nn0zd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 25 |
|
eluz |
⊢ ( ( 𝑓 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ↔ 𝑓 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 26 |
23 24 25
|
syl2anr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ↔ 𝑓 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 27 |
|
zleltp1 |
⊢ ( ( 𝑓 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( 𝑓 ≤ ( ♯ ‘ 𝐴 ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 28 |
23 24 27
|
syl2anr |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( 𝑓 ≤ ( ♯ ‘ 𝐴 ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 29 |
|
ovex |
⊢ ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ V |
| 30 |
|
vex |
⊢ 𝑓 ∈ V |
| 31 |
30
|
eliniseg |
⊢ ( ( ( ♯ ‘ 𝐴 ) + 1 ) ∈ V → ( 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 32 |
29 31
|
ax-mp |
⊢ ( 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ↔ 𝑓 < ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 33 |
28 32
|
bitr4di |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( 𝑓 ≤ ( ♯ ‘ 𝐴 ) ↔ 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) ) |
| 34 |
26 33
|
bitr2d |
⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ∧ 𝑓 ∈ ℕ ) → ( 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ↔ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 35 |
34
|
pm5.32da |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( 𝑓 ∈ ℕ ∧ 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) ↔ ( 𝑓 ∈ ℕ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) ) |
| 36 |
2
|
elin2 |
⊢ ( 𝑓 ∈ 𝐵 ↔ ( 𝑓 ∈ ℕ ∧ 𝑓 ∈ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) ) |
| 37 |
|
elfzuzb |
⊢ ( 𝑓 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑓 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 38 |
|
elnnuz |
⊢ ( 𝑓 ∈ ℕ ↔ 𝑓 ∈ ( ℤ≥ ‘ 1 ) ) |
| 39 |
38
|
anbi1i |
⊢ ( ( 𝑓 ∈ ℕ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ↔ ( 𝑓 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 40 |
37 39
|
bitr4i |
⊢ ( 𝑓 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑓 ∈ ℕ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑓 ) ) ) |
| 41 |
35 36 40
|
3bitr4g |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑓 ∈ 𝐵 ↔ 𝑓 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
| 42 |
41
|
eqrdv |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐵 = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 43 |
|
isoeq4 |
⊢ ( 𝐵 = ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( 𝐵 , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ) ) |
| 45 |
22 44
|
mpbid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ) |
| 46 |
4
|
oion |
⊢ ( 𝐴 ∈ Fin → dom 𝑂 ∈ On ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ On ) |
| 48 |
|
simpr |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 49 |
|
wofi |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 We 𝐴 ) |
| 50 |
4
|
oien |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → dom 𝑂 ≈ 𝐴 ) |
| 51 |
48 49 50
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ≈ 𝐴 ) |
| 52 |
|
enfii |
⊢ ( ( 𝐴 ∈ Fin ∧ dom 𝑂 ≈ 𝐴 ) → dom 𝑂 ∈ Fin ) |
| 53 |
48 51 52
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ Fin ) |
| 54 |
47 53
|
elind |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ ( On ∩ Fin ) ) |
| 55 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
| 56 |
54 55
|
eleqtrrdi |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ∈ ω ) |
| 57 |
|
eqid |
⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) |
| 58 |
|
0z |
⊢ 0 ∈ ℤ |
| 59 |
1 57 8 58
|
uzrdgxfr |
⊢ ( dom 𝑂 ∈ ω → ( 𝐺 ‘ dom 𝑂 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + ( 1 − 0 ) ) ) |
| 60 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 61 |
60
|
oveq2i |
⊢ ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + ( 1 − 0 ) ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) |
| 62 |
59 61
|
eqtrdi |
⊢ ( dom 𝑂 ∈ ω → ( 𝐺 ‘ dom 𝑂 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) ) |
| 63 |
56 62
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐺 ‘ dom 𝑂 ) = ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) ) |
| 64 |
51
|
ensymd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ≈ dom 𝑂 ) |
| 65 |
|
cardennn |
⊢ ( ( 𝐴 ≈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → ( card ‘ 𝐴 ) = dom 𝑂 ) |
| 66 |
64 56 65
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( card ‘ 𝐴 ) = dom 𝑂 ) |
| 67 |
66
|
fveq2d |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) ) |
| 68 |
57
|
hashgval |
⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 70 |
67 69
|
eqtr3d |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) = ( ♯ ‘ 𝐴 ) ) |
| 71 |
70
|
oveq1d |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 0 ) ↾ ω ) ‘ dom 𝑂 ) + 1 ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 72 |
63 71
|
eqtrd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐺 ‘ dom 𝑂 ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 73 |
72
|
fveq2d |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ dom 𝑂 ) ) = ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
| 74 |
|
isof1o |
⊢ ( 𝐺 Isom E , < ( ω , ℕ ) → 𝐺 : ω –1-1-onto→ ℕ ) |
| 75 |
12 74
|
ax-mp |
⊢ 𝐺 : ω –1-1-onto→ ℕ |
| 76 |
|
f1ocnvfv1 |
⊢ ( ( 𝐺 : ω –1-1-onto→ ℕ ∧ dom 𝑂 ∈ ω ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ dom 𝑂 ) ) = dom 𝑂 ) |
| 77 |
75 56 76
|
sylancr |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ dom 𝑂 ) ) = dom 𝑂 ) |
| 78 |
73 77
|
eqtr3d |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) = dom 𝑂 ) |
| 79 |
78
|
ineq2d |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) = ( ω ∩ dom 𝑂 ) ) |
| 80 |
|
ordom |
⊢ Ord ω |
| 81 |
|
ordelss |
⊢ ( ( Ord ω ∧ dom 𝑂 ∈ ω ) → dom 𝑂 ⊆ ω ) |
| 82 |
80 56 81
|
sylancr |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom 𝑂 ⊆ ω ) |
| 83 |
|
sseqin2 |
⊢ ( dom 𝑂 ⊆ ω ↔ ( ω ∩ dom 𝑂 ) = dom 𝑂 ) |
| 84 |
82 83
|
sylib |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ω ∩ dom 𝑂 ) = dom 𝑂 ) |
| 85 |
79 84
|
eqtrd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ω ∩ ( ◡ 𝐺 ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) = dom 𝑂 ) |
| 86 |
3 85
|
eqtrid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐶 = dom 𝑂 ) |
| 87 |
|
isoeq5 |
⊢ ( 𝐶 = dom 𝑂 → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ) ) |
| 88 |
86 87
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐶 ) ↔ ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ) ) |
| 89 |
45 88
|
mpbid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ) |
| 90 |
4
|
oiiso |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| 91 |
48 49 90
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| 92 |
|
isotr |
⊢ ( ( ( ◡ 𝐺 ↾ 𝐵 ) Isom < , E ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , dom 𝑂 ) ∧ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 93 |
89 91 92
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 94 |
|
isof1o |
⊢ ( ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 95 |
|
f1of |
⊢ ( ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 96 |
93 94 95
|
3syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 97 |
|
fzfid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin ) |
| 98 |
96 97
|
fexd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) ∈ V ) |
| 99 |
|
isoeq1 |
⊢ ( 𝑓 = ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) → ( 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ↔ ( 𝑂 ∘ ( ◡ 𝐺 ↾ 𝐵 ) ) Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) |
| 100 |
98 93 99
|
spcedv |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |